The great Cartesian invention had its roots in those famous problems of antiquity which originated in the days of Plato. In endeavoring to solve the problems of the trisection of an angle, of the duplication of the cube and of the squaring of the circle, the ruler and compass having failed them, the Greek geometers sought new curves. They stumbled on the ...There we find the nucleus of the method which Descartes later erected into a principle. Thus Apollonius referred the parabola to its axis and principal tangent, and showed that the semichord was the mean propotional between the latus rectum and the height of the segment. Today we express this relation by = L, calling the height the (y) and the semichord the (x); the being... L. ...the Greeks named these curves and many others... ... Thus the ellipse was the of a point the sum of the distances of which from two fixed points was constant. Such a description was a of the curve...
Tobias Dantzig